Pregroups with Length Functions

Faisal H. Nesayef
Departpent of Mathematics, Faculty of Science, University of Kirkuk, Kirkuk, Iraq

Abstract

Stallings [6] in 1971 introduced the concept of a pregroup. Subsequent work has been dose by Hoare [2], Nesayef [5], Chiswell [1], and many others. Five axioms were originally introduced by Stallings [6], namely P1, P2, $\mathrm{P} 3, \mathrm{P} 4$, and P 5 . It has been proved in [5] that P 3 is a consequence of the other axioms.

Keywords: Archimedean elements, Defined product of elements, Length Functions, Pregroup, Universal Group.

I. INTRODUCTION

In section one, we introduced the main concept and definition which we needed in later sections. In section two, we proved that some axioms are equivalent to the other ones.

We will also investigate some basic properties of Pregroups. Finally we show that the universal group of a Pregroup has a length function given by Lyndon [3]

II. LENGTH FUNCTION

Definition 2.1: A length function 11 an a group G, is a function given each element x of G a real number $|x|$, such that for all $x, y, z \in G$, the following axioms are satisfied
$A 1^{\prime}|e|=0, e$ is the identity elements of G.
A2 $\left|x^{-1}\right|=|x|$
$A 4 d(x, y)<d(y, z) \Rightarrow d(x, y)=d(x, z)$, where $d(x, y)=\frac{1}{2}\left(|x|+|y|-\left|x y^{-1}\right|\right.$
Lyndon showed that $A 4$ is equivalent to $d(x, y) \geq \min \{d(y, z), d(x, z)\}$ and to
$d(y, z), d(x, z) \geq m \Rightarrow d(x, z) \geq m$.
$A 1^{\prime}, A 2$ and $A 4$ imply $|x| \geq d(x, y)=d(y, x) \geq 0$
Assuming, $A 2$ and $A 4$ only, it is easy to show that:
i. $\quad e d(x, y) \geq|e|$
ii. $\quad|x| \geq|e|$
iii. $\quad d(x, y) \leq|x|-\frac{1}{2}|e|$, see [2]
$A 3$ states that $d(x, y) \geq 0$ is deductible from $A 1^{\prime}, A 2$ and $A 1^{\prime}$ is a weaker version of the axiom:
$A 1|x|=0$ if and only if $x=1$ in G .
The following results are introduced by Lyndon [3].
(1) $d(x y, y)+d\left(x, y^{-1}\right)=|y|$
(2) $d\left(x, y^{-1}\right)+d\left(y, z^{-1}\right) \leq|y|$ Implies $\quad|x y z| \leq|x|-|y|+|z|$
(3) $d\left(x, y^{-1}\right)+d\left(y, z^{-1}\right) \leq|y|$ Implies $d\left(x y, z^{-1}\right)=d\left(y, z^{-1}\right)$
(4) $d(x, y)+d\left(x^{-1}, y^{-1}\right) \geq|x|=|y|$ Implies $\left.\left|\left(x y^{-1}\right)^{2}\right| \leq\left|x y^{-1}\right|\right)$

It follows from (2) that for any $x, y \in G, d(x, y)=|y|-d\left(x y^{-1}, y^{-1}\right) \leq|y|$ by A3.
Since $d(x, y)=d(y, x)$ we get $d(x, y) \leq \min \{|x|,|y|\}$
As state that $\quad d(x, y)+d\left(x^{-1}, y^{-1}\right)>|x|=y \Rightarrow x=y$
Definition 2.2: A non-trivial element g of a group G is called non-Archimedean if $\left|g^{2}\right| \leq|g|$
Definition 2.3: Let G be a group with length function an element $x \neq 1$ in g is called Archimedean if $|x| \leq\left|x^{2}\right|$.
The following Axioms and results have added by Lyndon and others
$A 0 \quad x \neq 1 \Rightarrow|x|<\left|x^{2}\right|$
$C 0 d(x, y)$ is always an integer
C1 $x \neq 1,\left|x^{2}\right| \leq|x|$ implies $|x|$ is odd
C2 For no x is $\left|x^{2}\right|=|x|+1$
C3 if $|x|$ is odd then $\left|x^{2}\right| \geq|x|$
$C 1^{\prime}$ if $|x|$ is even and $|x| \neq 0$, then $\left|x^{2}\right|>|x|$
N0 $\left|x^{2}\right| \leq|x|$ implies $x^{2}=1$ is $x=x^{-1}$

$$
N 1^{*} G \text { is general by }\{x \in G:|x| \leq 1\}
$$

3. Pregroups:

Stallings [6] introduced the fallowing construction of a Pregroup.
Definition 3.1: A Pregroup is a set P containing an element called the identity element of P, denoted by 1 , a subset D of $\mathrm{P} \times \mathrm{P}$ and a mapping $\mathrm{D} \rightarrow \mathrm{P}$, when $(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{x}$ y together with a map $\mathrm{i}: \mathrm{P} \rightarrow \mathrm{P}$ when $\mathrm{i}(\mathrm{x})=\mathrm{x}^{-1}$, satisfying the following axioms. (We say that $\mathrm{x} y$ is defined if $(\mathrm{x}, \mathrm{y}) \in \mathrm{D}$, i.e. $\mathrm{x} y \in P$).
$P 1$. For all $x \in P, 1 x$ and $x 1$ are defined and $1 x=x 1=x$.
P2. For all $\mathrm{x} \in \mathrm{P}, \mathrm{x}^{-1} \mathrm{x}=\mathrm{x}^{-1} \mathrm{x}=1$
P3. For all $x, y \in P$ if $x y$ is defined, then $y^{-1} x^{-1}$ is defined and $(x y)^{-1}=y^{-1} x^{-1}$.
P4. Suppose that $x, y, z \in P$. If $x y$ and $y z$ are defined, then $x(y z)$ is defined, is which case $x(y z)=(x y) z$.
P5. If $w, x, y, z \in P$, and if $w x, x y, y z$, are all defined them either $w(x y)$ or $(x y) z$ is defined.
Proposition 3.2: Let P be a pregroup and $a, x \in P$. If $a x$ is defined, them $a^{-1}(a x)$ is defined and $a^{-1}(a x)=x$.
Proof: By P2, we have $\mathrm{a}^{-1} \mathrm{a}$ is defined and equals 1. Thus by P4 and P1, we have $\mathrm{a}^{-1}(\mathrm{ax})$ is defined and a^{-1} (ax $)=\left(a^{-1} a\right) x=x$.

The following propositions prove that P 3 is a consequence of the other axioms.
Proposition 3.3: Let P be a pregroup and $x, y, \in P$. If $x y$ is defined them $y^{-1} x^{-1}$ is defined and $(x y)^{-1}=y^{-1} x^{-1}$
Proof: Suppose $\mathrm{x} y$ is defined. Then $\mathrm{x} y \in \mathrm{P}$ and $(\mathrm{x} y)^{-1} \in \mathrm{P}$.
Consider: x^{-1}, xy, (xy) ${ }^{-1}$:
$\mathrm{x}^{-1}(\mathrm{xy})$ and $(\mathrm{xy})(\mathrm{xy})^{-1}$ are defined .

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 4, Issue 1, pp: (126-130), Month: April 2016 - September 2016, Available at: www.researchpublish.com

Since $\mathrm{x}^{-1}\left[(\mathrm{xy})(\mathrm{xy})^{-1}\right]$ is defined and equals to x^{-1} then by P 4 , we have :
$\left[x^{-1}(x y)\right](x y)^{-1}$ is also defined and $=x^{-1}\left[(x y)(x y)^{-1}\right]=x^{-1}$
By P4 again : y (x y $)^{-1}=\mathrm{x}^{-1}$
Now consider : $y^{-1}, \mathrm{y},(\mathrm{xy})^{-1}: \quad \mathrm{y}^{-1} \mathrm{y}$ and $\mathrm{y}(\mathrm{xy})$ are both defined .
Since $\left[y^{-1} y\right](x y)^{-1}$ is defined and $=(x y)^{-1}$.
Then by P4: $y{ }^{-1}\left[y(x y)^{-1}\right]$ is also defined and $=(x y)^{-1}$.
Definition 3.4: Let P be Pregroup. A word in P is an n-tuple: ($x_{1} \ldots x_{4}$) of elements of P, for some $n \geq 1$, n is called the length of the word.

Definition 3.5: A word $\left(x_{1} \ldots . x_{n}\right)$ is said to be reduced if $x_{i} x_{i+1}$ is not defined for any $1 \leq i \leq n-1$.
Let $P_{0}=\{x \in P: x y$ and $y x$ are defined for all $y \in P\}$. We call P_{o} the core of P.
Proposition 3.6: P_{o} is a subgroup.
Proof: Suppose $x \in P_{0}$. By the definition of $P_{0}: x y, y x$ are defined for all $y \in P$ and so $y^{-1} x^{-1}$ and $y^{-1} x$ are both defined, so $x^{-1} \in P$.

Suppose $\mathrm{x} \mathrm{y} \in \mathrm{P}_{\mathrm{o}} . \mathrm{x} \mathrm{y}, \mathrm{y} \mathrm{z}$ and $\mathrm{x}(\mathrm{yz})$ are all defined for all $\mathrm{z} \in \mathrm{P}$.
By P4: $(x y) z$ defined for all $z \in P_{o}$.
Definition 3.7: Let P be any Pregroup. The Universal group $U(P)$ is the set of all equivalence classes of reduced words.
Theorem 3.6 | |: U(P) $\rightarrow P$ satisfies the following axiom:
$A 1^{\prime}|1|=0$
$A 2|g|=\left|g^{-1}\right|, g \varepsilon U(P)$
$A 4^{\prime} d(g, h), d(h, k)>s \geq 0 \rightarrow d(g, k) \geq s$, where s is half an integer and
$2 d(g, h)=|g|+|h|-\left|g h^{-1}\right|$, for all $, h, k \varepsilon U(P)$.
Proof $A 1^{\prime}, A 2$ are obvious, and clearly $d(g, h) \geq 0$ so we shall prove $A 4^{\prime}$
Let $g, h, k \varepsilon U(P)$ the result is trivial if any one of $|g|,|h|,|k|$ is zero, because
$d(g, h) \geq 0$ so let $g=x_{1} \ldots x_{n},|g|=n \geq 1$
$h=y_{1} \ldots y_{m},|h|=m \geq 1$, and $k=z_{1} \ldots z_{\ell},|k|=\ell \geq 1$, be reduced, where x_{1}, y_{1}, and $z_{1} \notin A_{0}$
Suppose $d(g, h), d(h, k)>s$
Case 1 s is an integer
$g h^{-1}=x_{1} \ldots\left(x_{n-s} a_{s} y_{m-s}^{-1}\right) \ldots y_{1}^{-1}$, such that $a_{s+1}=x_{n-s} a_{s} y_{m-s}^{-1}$ is defined, where $a_{s}=x_{n-s+1} \ldots x_{n} y_{m}^{-1} \ldots y_{m-s+1}^{-1}$ and $a_{0}=1$.

Similarly $h k^{-1}=y_{1} \ldots y_{m-s} b_{s} z_{\ell-s}^{-1} \ldots z_{1}^{-1}$, such that $b_{s+1}=y_{m-s} b_{s} z_{\ell-s}^{-1}$ is defined, where
$b_{s}=y_{m-s+1} \ldots y_{m} z_{\ell}^{-1} \ldots z_{\ell-s+1}^{-1}$ and $b_{0}=1$
$g k^{-1}=x_{1} \ldots x_{n} y_{m}^{-1} \ldots y_{m-s}^{-1} y_{m-s} \ldots y_{m} z_{\ell}^{-1} \ldots . z_{1}^{-1}$

$$
=x_{1} \ldots\left(x_{n-s} \ldots x_{n} y_{m}^{-1} \ldots y_{m-s}^{-1}\right)\left(y_{m-s} \ldots y_{m} z_{\ell}^{-1} \ldots . z_{\ell-s}^{-1}\right) \ldots z_{1}^{-1}
$$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 4, Issue 1, pp: (126-130), Month: April 2016 - September 2016, Available at: www.researchpublish.com
Then $\left|g k^{-1}\right| \leq n-s-1+1+1+\ell-s-1 \leq n+\ell-2 s \quad$ i.e $d(g, k) \geq s$
case 2 s is not an integer
Suppose $(g, k), d(h, k)>s=r-\frac{1}{2}, r \geq 1$
$g k^{-1}=x_{1} \ldots x_{n-r} a_{r} y_{m-r}^{-1} \ldots y_{1}^{-1}$, where a_{r} is defined and equals
$x_{n-r+1} \ldots x_{n} y_{m}^{-1} \ldots y_{m-r+1}^{-1}$, and either $x_{n-r} a_{r}$ is defined

$$
\begin{equation*}
\text { Or } a_{r} y_{m-r}^{-1} \quad \text { is defined } \tag{1}
\end{equation*}
$$

Similarly $h k^{-1}=y_{1} \ldots y_{n-r} b_{r} z_{\ell-r}^{-1} \ldots z_{1}^{-1}, b_{r}$ is defined and
$b_{r}=y_{m-r+1} \ldots y_{m} z_{\ell}^{-1} \ldots z_{\ell-r+1}^{-1}$, and either $y_{m-r} b_{r}$ is defined

$$
\text { Or } b_{r} z_{\ell-r}^{-1} \quad \text { is defined }
$$

Suppose (2) and (3) hold:
If $a_{r}=\left(n_{n-r+1} a_{r-1}\right) y_{m-r+1}^{-1}$, then apply P5 on :
$\left(x_{n-r+1} a_{r-1}\right)^{-1},\left(x_{n-r+1} a_{r-1}\right) y_{m-r+1}^{-1}, y_{m-r}^{-1} y_{m-r} b_{r}$
Since the product of the first three terms is not defined, then
$\left(x_{n-r+1} a_{r-1}\right) y_{m-r+1}^{-1}, y_{m-r}^{-1} y_{m-r} b_{r}$ is defined, i.e. $a_{r} b_{r}$ is defined.
If $a_{r} x_{n-r+1}\left(a_{r-1} y_{m-r+1}^{-1}\right)$, then apply P5 on $y_{n-r+1}^{-1}, y_{n-r+1}\left(a_{r-1} y_{m-r+1}^{-1}\right), y_{m-r}^{-1} y_{m-r} b_{r}$
Since $a_{r-1} y_{m-r+1}^{-1} y_{m-r}^{-1}$ is not defined, then $x_{n-r+1}\left(a_{r-1} y_{m-r+1}^{-1}\right) y_{m-r}^{-1} y_{m-r} b_{r}$ is defined, i.e $a_{r} b_{r}$ is defined.
Put $a_{r} b_{r}=c_{r}$,

$$
\begin{aligned}
g k^{-1} & =x_{1} \ldots x_{n} y_{m}^{-1} \ldots y_{m-r+1}^{-1} y_{m-r+1} \ldots y_{m} z_{\ell}^{-1} \ldots z_{1}^{-1} \\
& =x_{1} \ldots x_{n-r} \ldots a_{r} b_{r} z_{\ell-r}^{-1} \ldots z_{1}^{-1}=x_{1} \ldots x_{n-r} \ldots c_{r} z_{\ell-r}^{-1} \ldots z_{1}^{-1}
\end{aligned}
$$

i.e. $\left|g k^{-1}\right| \leq n-r+1+\ell-r=n+\ell-2 r+1$

Then $d(g, k) \geq r-\frac{1}{2}=s$
If (1) holds, then $g k^{-1}=x_{r} \ldots\left(x_{n-r} a_{r}\right) b_{r} z_{\ell-r}^{-1} \ldots z_{1}^{-1}$, i.e.
$\left|g k^{-1}\right| \leq n-r+1+\ell-r$. thus $d(g, k) \geq r-\frac{1}{2}=s$
If (4) holds, then $g k^{-1}=x_{1} \ldots x_{n-r} a_{r}\left(b_{r} z_{\ell-r}^{-1}\right) z_{1}^{-1}$, i.e.
$\left|g k^{-1}\right| \leq n-r+1+\ell-r$, so again $d(g, k) \geq r-\frac{1}{2}=s$
Therefore $A 4^{\prime}$ is satisfied

III. CONCLUSION

This paper shows that the Universal group of a pregroup can be occupied with a length function defined by Lyndon [3]. Therefore it will have all the combinatorial group properties, which are open for investigations.

ACKNOWLEDGEMENT

We would like to express our thanks to the editors, reviewers and the Research Publish Journal team for their co-operation

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 4, Issue 1, pp: (126-130), Month: April 2016 - September 2016, Available at: www.researchpublish.com

REFERENCES

[1] Chiswell, I. M ; Length Function and Pregroups, Proceedings of Edinburgh Mathematical Society (1987), 30, 57 67.
[2] Hoare, A. H. M.; Nielson methods in groups with length functions, Math. Scand, (1981), $153-164$.
[3] Lyndon, R. C; Length Functions in Groups, Math. Scand, 12, (1963), 209 - 234.
[4] Nesayef, F.H.; Decomposition of Pregroups, International Journal of Scientific \& Engineering Research, Volume 5, Issue 1, January-2014, (1035-1037).
[5] Nesayef, F. H. ; Groups generated by element of length zero and one, Ph. D. Thesis, University of Birmingham, UK, 1983.
[6] Stallings, J. R.; Group theory and three dimensional manifolds, New Haven. (12), University Press, 1971.

